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Overview

Overview

* Introduction to Oversquashing

* Oversquashing v/s Oversmoothing

* An example problem and a simple rewiring solution
* More Solutions to Alleviate Oversquashing

* Geometric GCN

* Rewiring with Positional Encodings
* A curvature perspective on Oversquashing



Oversquashing

What is Oversquashing?

* Aggregation in multi-hop GNNs involve large neighborhoods
* GNNs “compress” this information into a fixed-length vector
» Bottleneck > Loss of Information

* Consequence: Difficult to learn long range information

Bottleneck

[1] Alon, Uri, and Eran Yahav. "On the bottleneck of graph
neural networks and its practical implications." arXiv preprint
arXiv:2006.05205 (2020).

Input sequence

Picture taken from [1]

(a) The bottleneck of RNN seq2seq models (b) The bottleneck of graph neural networks



Oversquashing

Oversmoothing v/s Oversquashing

Oversmoothing

» Refers to all node embeddings converging to similar vectors
* Found to occur with increasing number of layers

e Common in short-range tasks

Oversquashing

* Bottleneck caused due to information compression

* Issue more related to graph topology than # of GNN layers
* More relevant to long-range tasks



Oversquashing

Demonstrating Oversquashing

* The Neighbors Match Problem

* Multiple Graphs; Labels are a function of the number of
immediate blue neighbors

* A single layer GNN can count, but cannot infer the label!
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Picture taken from [1]



Oversquashing

Tree Neighbors Match

* Suppose the cloud is a binary tree

* We can control the “problem radius” () — minimum number of
GNN layers needed to propagate sufficient information

* This example has Problem Radius 3
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Picture taken from [1]



Tree Neighbors Match - Results

* Take GNNs of k = r 4+ 1 layers
* Even r = 4 causes over-squashing
e Extent of Oversquashing depends on the aggregator
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Oversquashing

Picture taken from [1]



Oversquashing

Tree Neighbors Match - Analysis

GIN and GCN suffer from oversquashing “before” GAT!

GAT can potentially ignore half the information



Solutions

Rewiring: Solutions Outlook

Oversquashing Consequences

— Capturing long-range dependencies are hard
 Rewiring involves modifying the underlying graph structure
 Modification: Changes the graph connectivity by addition or
removal of edges to ease information flow

e Solution 1: A Fully Adjacent Layer



S1: FA Layer

Solution 1: A Fully Adjacent (Last) Layer
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Fully Adjacent (FA) Layer — Results

S1: FA Layer

Datasets: Quantum Chemistry, Biological, Computer Programs
All of these datasets contain long-range problems

R-GIN
Property base’ +FA
mu 2.64+0.11 2.54+0.09
alpha 4.67+0.52 2.28+0.04
HOMO 1.4240.01 1.26+0.02
LUMO 1.5040.09 1.34+0.04
gap 2.27+0.09 1.961-0.04
R2 15.63+140 12.61+037
ZPVE 12.9341.31 5.03+036
U0 5.88+1.01 2.21+0.12
U 18.71+23.36 2.3240.18
H 5.62+0.81 2.26+0.19
G 5.38+0.75 2.04+0.24
Cv 3.5340.37 1.86+0.03
Omega 1.05+0.11 0.80+-0.04
Relative: -39.54%
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Table 2: Average accuracy (30 runs+stdev) on
the biological datasets. T — previously reported

by Errica et al. (2020).

Table 3: Average accuracy (5 runs+stdev)
on VARMISUSE. f — previously reported by

Brockschmidt (2020).

Results taken from [1]
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S1: FA Layer

Fully Adjacent Layer - Analysis

* Impressive performance gains over SOTA
* Why not make all layers FA?
* Graph topology

* Provides Relevant Inductive Bias = Regularization Effect
* Empirically 1500% higher error with all layers FA!

* Pros: Simple, Easy to Implement ©
* Cons: Computationally expensive for large graphs ®

FA layer eases information flow and relieves bottleneck
while retaining graph topology from previous layers

Results taken from [1]
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Solutions

Rewiring: Solutions Outlook

Oversquashing Consequences

— Capturing long-range dependencies are hard
 Rewiring involves modifying the underlying graph structure
 Modification: Changes the graph connectivity by addition or
removal of edges to ease information flow
e Solution 1: A Fully Adjacent Layer
e Solution 2: Geometric GCN
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S2: GeomGCN

Geometric GCN

* Neighborhoods are defined by the underlying graph

* Q. Can we bring together nodes that are far apart but structurally
similar, and involve them in aggregation?

* Such nodes are especially important in disassortative graphs
(biological networks)

* More concretely, can we design modified neighborhoods over
which aggregation can capture long-range dependencies?

[2] Pei H, Wei B, Chang KC, Lei Y, Yang B. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287. 14
2020 Feb 13.



S2: GeomGCN

Geometric GCN — Key |deas

* Construct a latent space where structurally similar nodes appear
together

* Exploit the underlying geometry of the latent space to define
new neighborhoods for aggregation

15



S2: GeomGCN

Geometric GCN — Modules and Components

* Node Embedding Module
* Maps the nodes to a latent continuous space

e Structural Neighborhood:
* Graph defined neighborhood and Latent space neighborhood

* Bi-Level Aggregation: This module has two levels of aggregation

* Low-Level Aggregation: Nodes from the same neighborhood and same
geometric relationship are aggregated into a virtual node

* High-Level Aggregation: Features are aggregated from virtual nodes to
generate final representations

16



S2: GeomGCN

Geometric GCN — Modules

* Node Embedding Module f: For Graph

G = (V,E), define f:v - z,, z, € R%,
vev

Neighborhood of a node : N(v) =
{N,(v), Ns(v)},7).Here, N, (v), Ng(v)
are respectively the graph neighborhood
and the latent space neighborhood

N.(v) ={ul|u€eV,d(z, z,) < p},
where d(z,, z,,) is the distance metric in
the latent space

T is a relational operator; 7: (z,, z,) —
r € R, where R is the set of geometric
relations; E.g.: Direction w.r.t target node
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Picture Taken from [2] 17



Geometric GCN — Aggregation

* Low Level Aggregation:

el?fr = p(lhylu € N;(v),1(2, 2,,) = 1})
ViEe{g,s},Vr €R

* High Level Aggregation:
m, = q(e;,, (i,7))Vi€{g,s}Vr €R

* Representation for layer L:
hy = o(my; W)
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Picture Taken from [2]
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S2: GeomGCN

Advantages of a geometric neighborhood

* Geometric neighborhood informs every edge differently
* Can distinguish different graphs, even with same aggregator!

Picture Taken from [2] 19



Geometric GCN — Empirical Results

* GeomGCN with GCN aggregator outperforms GAT and GCN
significantly; Huge performance gains in disassortative graphs

* Design of Latent Space method is critical for performance

Table 3: Mean Classification Accuracy (Percent)

S2: GeomGCN

Dataset Cora Cite. Pubm. Cham. Squi. Actor Corn. Texa. Wisc.
GCN 85.77 73.68 88.13 28.18 2396 2686 5270 52.16 4588
GAT 86.37 7432 87.62 4293 30.03 2845 5432 58.38 4941
Geom-GCN-I  85.19 77.99 90.05 60.31 33.32 29.09 56.76 57.58 58.24
Geom-GCN-P 8493 75.14 88.09 6090 38.14 31.63 6081 67.57 64.12
Geom-GCN-S 85.27 74771 8475 5996 36.24 30.30 55.68 59.73 56.67

Results taken from [2]
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S2: GeomGCN

Geometric GCN — Summary and Analysis

* Alleviates Oversquashing by rewiring the graph based on a
structural neighborhood ©

* Requires manual design of geometric relations ®
e E.g. Direction from Target Node

* Performance heavily depends on the embedding module

* Current work uses methods such as Struct2Vec, Poincare, and Iso-map,
all of which have strong inductive biases

21



Solutions

Rewiring: Solutions Outlook

Oversquashing Consequences

— Capturing long-range dependencies are hard
 Rewiring involves modifying the underlying graph structure
 Modification: Changes the graph connectivity by addition or
removal of edges to ease information flow

e Solution 1: A Fully Adjacent Layer

* Solution 2: Geometric GCN

e Solution 3: Rewiring with Positional Encodings

22



S3: Pos. Encoding

Rewiring with Positional Encodings - Preliminaries

* Receptive field of a node is it’s immediate neighbors from which
it aggregates information

* To reduce oversquashing, increase receptive field to the entire
graph

* |ssues: Poor performance and introduces computational load

* Trade some compute for increasing receptive fields, while
reducing oversquashing

[3] Briel-Gabrielsson, Rickard, Mikhail Yurochkin, and Justin
Solomon. "Rewiring with Positional Encodings for Graph Neural

. . . 2
Networks." arXiv preprint arXiv:2201.12674 (2022). :



S3: Pos. Encoding

Positional Encodings in GNNSs

e Additional information about graph topology provided either as
node/edge attribute for GNNs

 Examples: Laplacian Spectra, Node Degrees, Shortest Path
Lengths

* Increase GNN expressivity

24



S3: Pos. Encoding

Rewiring with Positional Encodings: Key Ideas

* Increase receptive field to a k-hop neighborhood where k < D
and D is the diameter of the graph = Ease information flow

* Introduce positional encodings = More expressivity and
oreserve graph topology

* Introduce Virtual Nodes = Ease information flow

25



S3: Pos. Encoding

Increasing Receptive Fields: Idea |

Expanded Receptive Field

* Givenagraph G = (V,E, f,, f.), with node attributes f,, and edge
attributes f,, add edges between all nodes within k-hops of each
othertocreate G' = (V,E',f,,f.")

* Set constant feature C,V e € E'\E

* Virtual Node: Add a virtual node v-;s to V, and add an edge
between v.; ¢ and every other node

* Set [, (vers) = C, for some constant C,,



S3: Pos. Encoding

Introducing Positional Encoding: Aims

* Lossless encodings — Be able to recover the original graph

* Discriminative Power: Encodings should improve the
discriminative power measured in terms of the 1-WL Test

* Context Range: Global or Local Information

27



S3: Pos. Encoding

Positional Encoding: Idea Il - Options

» Shortest Path Encodings (SPE):

* Edge positional encoding denoting the shortest path distance between
two nodes in the graph

* Lossless encoding as we can recover G from G’ when this encoding is 1
* Expanded receptive fields + SPE is more powerful than the 1-WL Test

e Spectral Embeddings:
* Node positional encoding consisting eigenvectors of the Laplacian
* Not necessarily lossless, but works well in practice
* Contains Global Information about the entire graph



S3: Pos. Encoding

Positional Encoding: Idea Il - Options

* Powers of the Adjacency Matrix:
* Edge positional encoding generalizing SPE
e Captures number of paths between a pair of nodes

* Lossless encoding, since we can recover G from G’ using the
first power of A

29



S3: Pos. Encoding

Positional Encoding: Options - Summary

* Shortest Path Encodings — Edge-based, Lossless, Expressive,
Local Context

* Spectral Embeddings — Node-based, Lossless*, Global Context

* Powers of the Adjacency Matrix — Edge-based, Lossless,
Generalizes SPE, Expressive, Controllable Context

30



S3: Pos. Encoding

Empirical Results — Benchmark Datasets

e Strong empirical performance with fewer parameters
* Empirically required receptive field has size k < D
* Encoding primarily depends on the dataset

Table 2. Benchmarking. Higher is better for all but for ZINC where lower is better. All results can be found in (Dwivedi et al., 2020;
Corso et al., 2020; Bouritsas et al., 2020) and the leaderboard at this link. The benchmarks and corresponding leaderboard have 100K
and 500K parameter entries, with many models only appearing with a subset of datasets or number of parameters; dashes indicate that
the result for corresponding model, number of parameters, and dataset was not found in their paper or on the leaderboard.

Datasets: PATTERN CLUSTER MNIST CIFARIO ZINC

task: node class. node class. graph class. graph class. graph reg.

# graphs: 14000 12000 70000 60000 12000

Avg # nodes: 117.47 117.20 70.57 117.63 23.16

Avg # edges: 474915 4301.72 564.53 941.07 49.83
MoNet(100K) 85.482+0.037 58.064+0.131 90.805+0.032 54.655+0.518 0.397+0.010
GAT(100K) 75.824+1.823 57.732+0.323  95.535+0.205 64.223+0.455 0.475+0.007
PNA(100K) - - 97.940+0.120  70.350+0.630  0.188+0.004
PNA(500K) - - - - 0.142+0.010
DGN(100K) - - - 72.838+0.417 - Results taken from [3]
GSN(100K) - - - - 0.140+0.006
GSN(500K) - - - - 0.101+0.010
GatedGCN(100K) 84.480+0.122 60.404+0.419 97.340+0.143 67.312+0.311 0.328+0.003
GatedGCN-PE/E(500K) 86.363+0.127 74.088+0.344 - - 0.214+0.006
Ours (100K) 86.757+0.031 77.575+0.149 98.743+0.062 73.808+0.193 0.143+0.006
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S3: Pos. Encoding

Empirical Results — Tree Neighbors Match

* In the figure, 7 is the |

receptive field, and 7,, is the Bl
problem radius 0.8}
o 0.7
* Withr =1, and vz, 2 o)
similar performances of r = g N [
2,andr =3 03| T2
021 . _4
0.1 r=1,CLS
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rp (problem radius)

Figure 1. NeighborsMatch (Alon and Yahav, 2021). Benchmark-
ing the extent of over-squashing via the problem radius 7.

Results taken from [3]
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S3: Pos. Encoding

Rewiring with Positional Encodings - Summary

* Reduces Oversquashing by increasing receptive fields ©

* Provides neat incorporation of positional encodings that can
theoretically make the GNN more expressive ©

* Need to manually tune over receptive fields sizes ®

* Positional Encodings are application specific in practice ®

33



Solutions

Rewiring: Solutions Outlook

Oversquashing Consequences

— Capturing long-range dependencies are hard
 Rewiring involves modifying the underlying graph structure
 Modification: Changes the graph connectivity by addition or
removal of edges to ease information flow
e Solution 1: A Fully Adjacent Layer
* Solution 2: Geometric GCN
* Solution 3: Rewiring with Positional Encodings

* A Curvature Perspective of Oversquashing

34



Curvature

A curvature perspective of Oversquashing

Picture Taken from [5]
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[4] Topping, Jake, et al. "Understanding over-squashing and bottlenecks on graphs via curvature." arXiv preprint arXiv:2111.14522 (2021).
[5] Bronstein, M. (2021, November 30). Over-squashing, bottlenecks, and graph Ricci curvature. Medium. Retrieved March 12, 2022, from
https://towardsdatascience.com/over-squashing-bottlenecks-and-graph-ricci-curvature-c238b7169e16
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Curvature

Curvature — Sensitivity

dhy,

 Sensitivity ‘ax can quantify how much a node representation is affected by
S

other node representations

* Sensitivity is bounded by powers of adjacency matrix 2 Graph Topology is
responsible!

* Smaller value potentially indicates oversquashing

Picture Taken from [5] 36



Curvature

Ricci Curvature of a Manifold

}— 1

Sperical (>0) Euclidean (=0) Hyperbolic (<0)

Curvature is characterized by “geodesic dispersion”

37
Picture Taken from [5]



Curvature

Geodesic Dispersion on Graphs
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Picture Taken from [5]
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Curvature

Curvature for Graphs and Take-Away

* Define a version of curvature for edges based on geometric cues

e For Spherical Geometry, Count Triangles
* For Euclidean Geometry, Count 4-cycles
* For Hyperbolic Geometry, Count # of outgoing edges

* Sensitivity is related to graph specific curvature
e Conclusion: Negatively curved edges > Cause oversquashing

39



Solutions

Rewiring: Solutions Outlook

Oversquashing Consequences

— Capturing long-range dependencies are hard
 Rewiring involves modifying the underlying graph structure
 Modification: Changes the graph connectivity by addition or
removal of edges to ease information flow

e Solution 1: A Fully Adjacent Layer

* Solution 2: Geometric GCN

* Solution 3: Rewiring with Positional Encodings

* A Curvature Perspective of Oversquashing

* Solution 4: Curvature Based Rewiring

40



Curvature

A Curvature Based Rewiring Solution

Stochastic Discrete Ricci Flow (SDRF)

* Before training a GNN, rewire the graph as follows
* Consider a most bottlenecked edge
* Add an edge that can provide a high improvement to curvature
* Remove the least bottlenecked edge under certain conditions
* Repeat

* The above procedure greedily increases curvature and reduces over-
squashing by providing better connectivity ©

41



Empirical Results

Curvature

Cornell Texas Wisconsin Chameleon Squirrel Actor Cora Citeseer Pubmed
H(G) 0.11 0.06 0.16 0.25 0.22 0.24 0.83 0.71 0.79
None 52.69 £0.21 61.19 £0.49 54.60+0.86 41.33 £ 0.18 30.321+£0.99 23.84+£0.43 81.89+£0.79 72.31 £0.17 78.16 £0.23
Undirected 53.20 £ 0.53 63.38 £0.87 51.3741.15 42.02 £ 0.30 35.53 £ 0.78 21.45+0.47 - - -
+FA 58.29 4+ 0.49 64.82 4+ 0.29 55.48 £ 0.62 42.67 £ 0.17 36.86 £+ 0.44 24.14 £0.43 81.65 £ 0.18 70.47 £0.18 79.48 + 0.12
DIGL (PPR) 58.26 4+ 0.50 62.03 & 0.43 49.53 +0.27 42.02+0.13 33.22+0.14 24.77 +0.32 83.21 4+ 0.27 73.29 4 0.17 78.84 4+ 0.08
DIGL + Undirected 59.54 4= 0.64 63.54 + 0.38 52.23 £ 0.54 42.68 £ 0.12 32.48 +0.23 25.45 £+ 0.30 - - -

SDRF
SDRF + Undirected

54.60 +£ 0.39 64.46 + 0.38 55.51 4+ 0.27 42.73 + 0.15 37.05 4+ 0.17 28.42 4+ 0.75 82.76 + 0.23 72.58 4+ 0.20 79.10 + 0.11
57.54 £ 0.34 70.35 4+ 0.60 61.55 + 0.86 44.46 + 0.17 37.67 4+ 0.23 28.35 + 0.06

Table 2: Experimental results on common node classification benchmarks. Top two in bold.

Results Taken from [4]
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Curvature

A curvature perspective of Oversquashing - Summary

* Establishes links between geometry and graph topology
* Leads to a very simple algorithm for rewiring

* These links can prove a better understanding using tools from
spectral graph theory

* Lots of interesting theoretical directions
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Summary

Summary: Outlook on Rewiring and Solutions

Oversquashing Consequences

— Capturing long-range dependencies are hard
 Rewiring involves modifying the underlying graph structure
 Modification: Changes the graph connectivity by addition or

removal of edges to ease information flow
e Solution 1: A Fully Adjacent Layer
* Solution 2: Geometric GCN
* Solution 3: Rewiring with Positional Encodings
* A Curvature Perspective of Oversquashing

e Solution 4: A Curvature Inspired Rewiring Solution

44



