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Overview

• Introduction to Oversquashing

• Oversquashing v/s Oversmoothing

• An example problem and a simple rewiring solution

• More Solutions to Alleviate Oversquashing

• Geometric GCN

• Rewiring with Positional Encodings

• A curvature perspective on Oversquashing
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What is Oversquashing?

• Aggregation in multi-hop GNNs involve large neighborhoods
• GNNs “compress” this information into a fixed-length vector

• Bottleneck → Loss of Information
• Consequence: Difficult to learn long range information
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[1] Alon, Uri, and Eran Yahav. "On the bottleneck of graph 
neural networks and its practical implications." arXiv preprint 

arXiv:2006.05205 (2020).
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Oversmoothing v/s Oversquashing

Oversmoothing

• Refers to all node embeddings converging to similar vectors

• Found to occur with increasing number of layers

• Common in short-range tasks 

Oversquashing

• Bottleneck caused due to information compression

• Issue more related to graph topology than # of GNN layers

• More relevant to long-range tasks
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Demonstrating Oversquashing
• The Neighbors Match Problem
• Multiple Graphs; Labels are a function of the number of 

immediate blue neighbors
• A single layer GNN can count, but cannot infer the label!
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Tree Neighbors Match

• Suppose the cloud is a binary tree
• We can control the “problem radius” (𝑟) – minimum number of 

GNN layers needed to propagate sufficient information
• This example has Problem Radius 3
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Tree Neighbors Match - Results

• Take GNNs of 𝑘 = 𝑟 + 1 layers
• Even 𝑟 = 4 causes over-squashing
• Extent of Oversquashing depends on the aggregator
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Tree Neighbors Match - Analysis

GIN and GCN suffer from oversquashing “before” GAT!

GAT can potentially ignore half the information
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Rewiring: Solutions Outlook
Oversquashing Consequences
→ Capturing long-range dependencies are hard

• Rewiring involves modifying the underlying graph structure
• Modification: Changes the graph connectivity by addition or 

removal of edges to ease information flow
• Solution 1: A Fully Adjacent Layer
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Solution 1: A Fully Adjacent (Last) Layer
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Fully Adjacent (FA) Layer – Results

Datasets: Quantum Chemistry, Biological, Computer Programs
All of these datasets contain long-range problems
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Results taken from [1]
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Fully Adjacent Layer - Analysis

• Impressive performance gains over SOTA
• Why not make all layers FA?
• Graph topology 

• Provides Relevant Inductive Bias → Regularization Effect

• Empirically 1500% higher error with all layers FA!

• Pros: Simple, Easy to Implement ☺
• Cons: Computationally expensive for large graphs 

FA layer eases information flow and relieves bottleneck 
while retaining graph topology from previous layers
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Rewiring: Solutions Outlook
Oversquashing Consequences
→ Capturing long-range dependencies are hard

• Rewiring involves modifying the underlying graph structure
• Modification: Changes the graph connectivity by addition or 

removal of edges to ease information flow
• Solution 1: A Fully Adjacent Layer
• Solution 2: Geometric GCN

13

Solutions



Geometric GCN

• Neighborhoods are defined by the underlying graph

• Q. Can we bring together nodes that are far apart but structurally 
similar, and involve them in aggregation?

• Such nodes are especially important in disassortative graphs 
(biological networks)

• More concretely, can we design modified neighborhoods over 
which aggregation can capture long-range dependencies?
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[2] Pei H, Wei B, Chang KC, Lei Y, Yang B. Geom-gcn: Geometric 
graph convolutional networks. arXiv preprint arXiv:2002.05287. 

2020 Feb 13.



Geometric GCN – Key Ideas

• Construct a latent space where structurally similar nodes appear 
together

• Exploit the underlying geometry of the latent space to define 
new neighborhoods for aggregation
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Geometric GCN – Modules and Components

• Node Embedding Module
• Maps the nodes to a latent continuous space

• Structural Neighborhood: 
• Graph defined neighborhood and Latent space neighborhood

• Bi-Level Aggregation: This module has two levels of aggregation
• Low-Level Aggregation: Nodes from the same neighborhood and same 

geometric relationship are aggregated into a virtual node

• High-Level Aggregation: Features are aggregated from virtual nodes to 
generate final representations
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Geometric GCN – Modules

• Node Embedding Module 𝑓: For Graph 
𝐺 = 𝑉, 𝐸 , define    𝑓: 𝑣 → 𝑧𝑣 , 𝑧𝑣 ∈ ℝ𝑑, 
𝑣 ∈ 𝑉

• Neighborhood of a node : 𝑁 𝑣 =
( 𝑁𝑔 𝑣 ,𝑁𝑠 𝑣 , 𝜏).Here, 𝑁𝑔 𝑣 ,𝑁𝑠 𝑣
are respectively the graph neighborhood 
and the latent space neighborhood 

• 𝑁𝑠 𝑣 = 𝑢 𝑢 ∈ 𝑉, 𝑑 𝑧𝑢, 𝑧𝑣 < 𝜌}, 
where 𝑑 𝑧𝑢, 𝑧𝑣 is the distance metric in 
the latent space 

• 𝜏 is a relational operator; 𝜏: 𝑧𝑢, 𝑧𝑣 →
𝑟 ∈ 𝑅, where 𝑅 is the set of geometric 
relations; E.g.: Direction w.r.t target node
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Geometric GCN – Aggregation

• Low Level Aggregation:
𝑒𝑖,𝑟
𝑣 = 𝑝( ℎ𝑢 𝑢 ∈ 𝑁𝑖 𝑣 , 𝜏 𝑧𝑣, 𝑧𝑢 = 𝑟})

∀𝑖 ∈ {𝑔, 𝑠}, ∀ 𝑟 ∈ 𝑅

• High Level Aggregation:
𝑚𝑣 = 𝑞(𝑒𝑖,𝑟

𝑣 , 𝑖, 𝑟 )∀𝑖 ∈ 𝑔, 𝑠 ∀ 𝑟 ∈ 𝑅

• Representation for layer L:

ℎ𝑣
𝐿 = 𝜎 𝑚𝑣

𝐿;𝑊𝐿
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Advantages of a geometric neighborhood

• Geometric neighborhood informs every edge differently

• Can distinguish different graphs, even with same aggregator!
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Geometric GCN – Empirical Results

• GeomGCN with GCN aggregator outperforms GAT and GCN 
significantly; Huge performance gains in disassortative graphs

• Design of Latent Space method is critical for performance
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Geometric GCN – Summary and Analysis

• Alleviates Oversquashing by rewiring the graph based on a 
structural neighborhood ☺

• Requires manual design of geometric relations 
• E.g. Direction from Target Node

• Performance heavily depends on the embedding module 
• Current work uses methods such as Struct2Vec, Poincare, and Iso-map, 

all of which have strong inductive biases
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Rewiring: Solutions Outlook
Oversquashing Consequences
→ Capturing long-range dependencies are hard

• Rewiring involves modifying the underlying graph structure
• Modification: Changes the graph connectivity by addition or 

removal of edges to ease information flow
• Solution 1: A Fully Adjacent Layer
• Solution 2: Geometric GCN
• Solution 3: Rewiring with Positional Encodings
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Rewiring with Positional Encodings - Preliminaries

• Receptive field of a node is it’s immediate neighbors from which 
it aggregates information

• To reduce oversquashing, increase receptive field to the entire 
graph
• Issues: Poor performance and introduces computational load

• Trade some compute for increasing receptive fields, while 
reducing oversquashing
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[3] Brüel-Gabrielsson, Rickard, Mikhail Yurochkin, and Justin 
Solomon. "Rewiring with Positional Encodings for Graph Neural 

Networks." arXiv preprint arXiv:2201.12674 (2022).



Positional Encodings in GNNs

• Additional information about graph topology provided either as 
node/edge attribute for GNNs

• Examples: Laplacian Spectra, Node Degrees, Shortest Path 
Lengths

• Increase GNN expressivity
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Rewiring with Positional Encodings: Key Ideas

• Increase receptive field to a 𝑘-hop neighborhood where 𝑘 ≪ 𝐷
and 𝐷 is the diameter of the graph → Ease information flow 

• Introduce positional encodings →More expressivity and 
preserve graph topology

• Introduce Virtual Nodes → Ease information flow 
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Increasing Receptive Fields: Idea I

Expanded Receptive Field

• Given a graph 𝐺 = (𝑉, 𝐸, 𝑓𝑣 , 𝑓𝑒), with node attributes 𝑓𝑣 and edge 
attributes 𝑓𝑒, add edges between all nodes within 𝑘-hops of each 
other to create 𝐺′ = (𝑉, 𝐸′, 𝑓𝑣

′, 𝑓𝑒′)

• Set constant feature 𝐶𝑒∀ 𝑒 ∈ 𝐸′\E

• Virtual Node: Add a virtual node 𝑣𝐶𝐿𝑆 to 𝑉, and add an edge 
between 𝑣𝐶𝐿𝑆 and every other node

• Set 𝑓𝑣
′ 𝑣𝐶𝐿𝑆 = 𝐶𝑣 for some constant 𝐶𝑣
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Introducing Positional Encoding: Aims

• Lossless encodings – Be able to recover the original graph

• Discriminative Power: Encodings should improve the 
discriminative power measured in terms of the 1-WL Test

• Context Range: Global or Local Information
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Positional Encoding: Idea II - Options

• Shortest Path Encodings (SPE): 
• Edge positional encoding denoting the shortest path distance between 

two nodes in the graph

• Lossless encoding as we can recover 𝐺 from 𝐺′ when this encoding is 1

• Expanded receptive fields + SPE is more powerful than the 1-WL Test

• Spectral Embeddings:
• Node positional encoding consisting eigenvectors of the Laplacian

• Not necessarily lossless, but works well in practice

• Contains Global Information about the entire graph

28

S3: Pos. Encoding



Positional Encoding: Idea II - Options

• Powers of the Adjacency Matrix:
• Edge positional encoding generalizing SPE
• Captures number of paths between a pair of nodes

• Lossless encoding, since we can recover 𝐺 from 𝐺′ using the 
first power of A
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Positional Encoding: Options - Summary

• Shortest Path Encodings – Edge-based, Lossless, Expressive, 
Local Context

• Spectral Embeddings – Node-based, Lossless*, Global Context
• Powers of the Adjacency Matrix – Edge-based, Lossless, 

Generalizes SPE, Expressive, Controllable Context
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Empirical Results – Benchmark Datasets

• Strong empirical performance with fewer parameters

• Empirically required receptive field has size 𝑘 ≪ 𝐷

• Encoding primarily depends on the dataset
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Empirical Results – Tree Neighbors Match
• In the figure, 𝑟 is the 

receptive field, and 𝑟𝑝 is the 
problem radius

• With 𝑟 = 1, and 𝑣𝐶𝐿𝑆, 
similar performances of 𝑟 =
2, and 𝑟 = 3
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Rewiring with Positional Encodings - Summary

• Reduces Oversquashing by increasing receptive fields ☺

• Provides neat incorporation of positional encodings that can 
theoretically make the GNN more expressive ☺

• Need to manually tune over receptive fields sizes 

• Positional Encodings are application specific in practice 
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Rewiring: Solutions Outlook
Oversquashing Consequences
→ Capturing long-range dependencies are hard

• Rewiring involves modifying the underlying graph structure
• Modification: Changes the graph connectivity by addition or 

removal of edges to ease information flow
• Solution 1: A Fully Adjacent Layer
• Solution 2: Geometric GCN
• Solution 3: Rewiring with Positional Encodings
• A Curvature Perspective of Oversquashing
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A curvature perspective of Oversquashing
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Curvature

[4] Topping, Jake, et al. "Understanding over-squashing and bottlenecks on graphs via curvature." arXiv preprint arXiv:2111.14522 (2021).
[5] Bronstein, M. (2021, November 30). Over-squashing, bottlenecks, and graph Ricci curvature. Medium. Retrieved March 12, 2022, from 

https://towardsdatascience.com/over-squashing-bottlenecks-and-graph-ricci-curvature-c238b7169e16 
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Curvature – Sensitivity 
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• Sensitivity 
𝜕ℎ𝑢

𝜕𝑥𝑠
can quantify how much a node representation is affected by 

other node representations
• Sensitivity is bounded by powers of adjacency matrix → Graph Topology is 

responsible!
• Smaller value potentially indicates oversquashing

Curvature

Picture Taken from [5]



Ricci Curvature of a Manifold
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Picture Taken from [5]

Curvature is characterized by “geodesic dispersion”



Geodesic Dispersion on Graphs
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Curvature for Graphs and Take-Away
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• Define a version of curvature for edges based on geometric cues 
• For Spherical Geometry, Count Triangles

• For Euclidean Geometry, Count 4-cycles

• For Hyperbolic Geometry, Count # of outgoing edges

• Sensitivity is related to graph specific curvature

• Conclusion: Negatively curved edges → Cause oversquashing

Curvature



Rewiring: Solutions Outlook
Oversquashing Consequences
→ Capturing long-range dependencies are hard

• Rewiring involves modifying the underlying graph structure
• Modification: Changes the graph connectivity by addition or 

removal of edges to ease information flow
• Solution 1: A Fully Adjacent Layer
• Solution 2: Geometric GCN
• Solution 3: Rewiring with Positional Encodings
• A Curvature Perspective of Oversquashing

• Solution 4: Curvature Based Rewiring
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A Curvature Based Rewiring Solution
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Stochastic Discrete Ricci Flow (SDRF)

• Before training a GNN, rewire the graph as follows 
• Consider a most bottlenecked edge

• Add an edge that can provide a high improvement to curvature

• Remove the least bottlenecked edge under certain conditions

• Repeat

• The above procedure greedily increases curvature and reduces over-
squashing by providing better connectivity ☺

Curvature



Empirical Results
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Curvature

Results Taken from [4]



A curvature perspective of Oversquashing - Summary

• Establishes links between geometry and graph topology

• Leads to a very simple algorithm for rewiring

• These links can prove a better understanding using tools from 
spectral graph theory

• Lots of interesting theoretical directions 
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Summary: Outlook on Rewiring and Solutions
Oversquashing Consequences
→ Capturing long-range dependencies are hard

• Rewiring involves modifying the underlying graph structure
• Modification: Changes the graph connectivity by addition or 

removal of edges to ease information flow
• Solution 1: A Fully Adjacent Layer
• Solution 2: Geometric GCN
• Solution 3: Rewiring with Positional Encodings
• A Curvature Perspective of Oversquashing

• Solution 4: A Curvature Inspired Rewiring Solution
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